

AMS-02 Thermal CDR

Vacuum Case

USS-02

ACC

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 1 March 9-11, 2003

USS-02

- No heat dissipation
- Primarily anodized aluminum
- Provides structural interface to ISS, STS and AMS-02 subdetectors
- Thermal blankets on joints and trunnion bridges are being considered to help reduce gradients at TRD I/F's.

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 2 March 9-11, 2003

INTEGRATION HARDWARE

- Unpowered Hardware: Power & Video Grapple Fixture (PVGF), Flight Releasable Grapple Fixture (FRGF), Umbilical Mechanism Assembly (UMA), Payload Disconnect Assembly (PDA), and EVA Connector Panel
- External Berthing Camera System (EBCS) will be used to berth (and unbearth) AMS-02. Camera will be power "on", whenever payload is grappled by the PVGF. Survival heaters will be activated constantly while AMS is powered through the UMA.

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 3 March 9-11, 2003

INTEGRATION HARDWARE (continued)

AMS-02 Thermal CDR Craig Clark (281) 333-6779 Page 4 March 9-11, 2003

VACUUM CASE

- VC needs to be "cold as possible" to maximize SFHe endurance
- Any hardware mounted to VC with significant heat dissipation will be thermally isolated. Hardware mounted to VC include:

Cryo-coolers

Anti-Coincidence Counter (ACC) Photo Multipliers (PM's)

Tracker Thermal Control System (TTCS)

Tracker Cables

Miscellaneous cables, stand-off, clamps, etc.

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 5 March 9-11, 2003

VACUUM CASE (continued)

- Structural interfaces to USS-02, Tracker and ACC will also be thermally isolated.
- The VC will be covered with MLI blankets on +/- Y quadrants and silver-Teflon on +/-X quadrants. MLI blankets will also cover upper and lower conical flanges.

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 6 March 9-11, 2003

VACUUM CASE GRADIENTS

- Vacuum case temperature gradients have been considered in structural deflection analyses.
- Worst case gradients occur at beta=+75, YPR=-15,-20,-15

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 7 March 9-11, 2003

Vacuum Case Maximum Delta T B=+75, YPR=-15,-20,-15

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 8 March 9-11, 2003

Vacuum Case Maximum Delta T B=+75, YPR=-15,-20,-15

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 9 March 9-11, 2003

MAGNET

 By design magnet Cold Mass has minimal effect on VC temperature and is not included in thermal model. VC temperature, however, does play a significant role in heat leak into cold mass and therefore needs to be as cold as possible.

Anti-Coincidence Counter (ACC)

- Almost identical to what was flown on AMS-01
- Limits: -20°C to +40°C Operating and Non-Operating
- Small heat dissipation (~1 watt) in Photo Multiplier Tubes (PMT's) mounted on VC conical flange.
- ACC support shell coated with low emissivity surface to minimize radiation from Tracker support shell.

Craig Clark (281) 333-6779 AMS-02 Thermal CDR Page 11 March 9-11, 2003

